Empirical study of computational techniques used for parameters' estimation in multivariate linear mixed effects models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)

هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...

15 صفحه اول

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Computational Strategies for Multivariate Linear Mixed-Effects Models With Missing Values

This article presents new computational techniques for multivariate longitudinal or clustered data with missing values. Current methodology for linear mixed-effects models can accommodate imbalance or missing data in a single response variable, but it cannot handle missing values in multiple responses or additional covariates. Applying a multivariate extension of a popular linear mixed-effects ...

متن کامل

Use of robust multivariate linear mixed models for estimation of genetic parameters for carcass traits in beef cattle.

Assumptions of normality of residuals for carcass evaluation may make inferences vulnerable to the presence of outliers, but heavy-tail densities are viable alternatives to normal distributions and provide robustness against unusual or outlying observations when used to model the densities of residual effects. We compare estimates of genetic parameters by fitting multivariate Normal (MN) or hea...

متن کامل

Multivariate linear mixed models for multiple outcomes.

We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of exposure across outcomes. In contrast to the Sammel-Ryan model, the MLMM separates the mean and correlation parameter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Afrika Statistika

سال: 2019

ISSN: 2316-090X

DOI: 10.16929/as/2019.2061.149